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Gauge theory of time-dependent stresses and defects: 
quantum defect dynamics 

H Kleinertt 
Freie Universitat Berlin, Institut fur Theorie der Elementarteilchen, Arnimallee 14, 1000 
Berlin 33, West Germany 

Received 3 May 1985 

Abstract. We construct the two-dimensional quantum field theory which governs an 
idealised ensemble of dislocations and disclinations, including their higher gradient elastic 
interactions. The action contains four gauge fields of phonons A,, C,, and H, D,. coupled 
minimally to two complex Higgs fields pa, 9, which are the disorder fields of dislocations 
and disclinations, respectively. Because of the close analogy with the quantum field theory 
of electrons and photons, called quantum electrodynamics (QED), the new theory of defects 
and phonons may be named quantum defect dynamics (QDD). 

The interaction of defects in a crystal is described by field equations which bear a 
close resemblance to the Maxwell-Lorentz theory of electrons [ 1]$. The electromag- 
netic fields Bi and E, correspond to the stress tensor uu and the momentum density 
pi, respectively. The local coupling of the gauge field A, with the conserved electron 
current J, corresponds to the coupling of the stress gauge field with the conserved 
defect tensor. 

The principal difference between the two systems lies in the fact that electrons 
describe world lines in 4-space with currents 

while defects form lines in real space, such that in four dimensions they form world 
sheets. In two-dimensional systems, however, the analogy between the two systems is 
very close: defects are point-like and form world lines in spacetime just as electrons. 
It is the purpose of this paper to exploit this analogy and perform, in the defect system, 
the same steps which lead from the Maxwell-Lorentz theory to quantum electro- 
dynamics. The result will be a simple field theoretic action which governs the quantum 
phenomena of defects and phonons. It may be called quantum defect dynamics (QDD). 
The defects appearing in this theory are idealised objects. They can freely glide and 
climb. Processes which impede the motion of real defects [2] must be included 
separately. A similar treatment has been given before to vortices in films of superfluid 
helium (quantum vortex dynamics) [3] which the reader may find useful to read before 
studying the present more complicated defect problem. 

t Supported in part by the Deutsche Forschungsgemeinschaft under Grant No KI 256/ 10-1. 
$See also [la]. 
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1856 H Kleinert 

The starting point is the quantum mechanical partition function? of stress fluctu- 
ations in the presence of plastic distortions 

with the action 

d = d3~[ : ( ao~ ,  -po,")2+$e(aow - KoP)2-f(a,ul+alu, -p,,p-plzp)2 

( 2 )  - g A ( a l U F -  1 pI~)2-2p12(a10 - 
I 

We have used natural units in which the transverse sound velocity C, = ( p / p ) ' "  and 
the shear modulus p are both equal to oneS. The constant 1' controls higher gradient 
elasticity (we have omitted gradients of the strain tensor since they produce no 
interesting new qualitative structures). The gradients of o are necessary in order to 
acquire sensitivity to disclinations [4]$. The plastic quantities PrZ  , xr are given by P P  

where b, are the Burgers' vectors, s1 is the Frank scalar, and S is the time-dependent 
Volterra cutting surface, which in two dimensions is really a line and u k  the velocity 
with which S moves through space. The S function 6,(S)  is singular on S and points 
along the normal vector. Since S is a line, we may also write S,(S) as - - E , ~ & ( S )  where 
g, (S)  = j  ds  dx:/ds6'2'(x-x'(s, t ) ) .  We shall keep the notation (3)  because of its 
analogy with the three-dimensional situation. 

The stresses and torque stresses are introduced by taking (1) to the canonical form 
[41 

where the elastic energy depends only on the symmetric part &,, of U,,. The integration 
over the antisymmetric part enforces the connection between w and $ E , , ~ ~ U ~ ,  modulo 
the plastic part $~,p,,'. Integrating out u,(x) and o ( x )  produces the conservation laws 

a , ~ ,  = aop1 a,T, = aor - & k l u k l .  ( 6 )  

t If external currents are added, this object permits calculating all correlation functions. The sources are 
omitted for brevity. 
$ Notation: xo= t = time, x = (x ' )  = (x', x2) =space, x = (x') = (xo, XI, x'), d'x = dxo dx' dx2, a, = a/dx'. 
5 For static interaction energies of defects within higher gradient elasticity, in three dimensions, see [4a]. 
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They can be fulfilled by introducing the phonon (or stress) gauge fields Ai, H, cij, d,: 
p ,  = a .c.. 

7T = a.d. + &..c.. 
'Tu = EikdkAj + aoC,  J I U 

(7)  Ti = EikdkH - Ai aodi I 1  y lJ .  

The gauge transformations which leave this decomposition invariant are somewhat 
degenerate, due to the reduced dimensionality of space?: 

A i + A i + d i [ + a o A i  H + H + a o [  (8) 

cij --* cij - EikakAj di+ di-&ikak[+Ai. (9 ) 

A, + A ,  + &Aj Hi+  H i + a i [ +  cif&. (9') 

It is useful to introduce A, = eilclj, Hi = Eifdf, such that (9) becomes 

Inserting (7)  into ( 5 ) ,  the interaction with the defects can be brought to the form 

The sources 

f f i  = E k , a d j , P -  4: e & k j a k 4 j p  
(11) 

~ i j  = E i f ( a o P {  - a f ~ o j p  + ~ l j + o ' )  Si = E i f ( a o 4 ? - a f 4 0 p )  
are identified with dislocation density, disclination density, and their respective cur- 
rents. Inserting (3)  we find explicitly 

aj (x) = 6 ( ~3 t 1) ( bj - E j J r  1 
J , ( x ) = - t r i s ( L ( t ) ) ( b , - n E j r x r )  S i ( x ) = - t r i S ( L ( t ) ) R  

e(x) = s ( ~ ( t ) ) n  
(12) 

where L is the boundary 'line' of the Volterra cutting surface S which, in two dimensions, 
consists of the two end points. The S ( L )  function is positive on the one and negative 
on the other end point. 

The densities and currents obviously satisfy the conservation laws 

aisi = aoe. (13) a J . .  = a  a - &..S. y O j  3 1 1  

These are necessary to ensure gauge invariance under (8) and (9'). 
Notice that the plastic quantities in (11) are gauge fields on their ownS. Defect 

gauge transformations correspond to changing the shape of the Volterra cutting surface. 
Indeed, under S + S' we find that Si(S')  = Si(S) -ais( V )  where V is the volume (here 
area) over which the surface S has swept. From (3) we see that under such a change 

(14) 
p;+PijP+aiNJ-E,M dip-+ 4;+aiM 

p0jp + p0jp + a0w 40' + 4 o p  + aoM 

7 For the full three-dimensional gauge transformations in the static case see [4]. 
$The double gauge properties of elasticity and plasticity are discussed in [ 5 ] .  
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where M = -S( V)n,  N, = -S( V ) ( b ,  - ~ E ~ , X , ) .  These transformations obviously pre- 
serve (11). Separating out self-energies of the defects [6-81 we arrive at a partition 
functiont 

phon 
Z = 9Ai9H9A,9Hi  @ [A,  H, A,, Hi] exp I 

) x exp( a 5 d3x(Aia, + H e  - A,Jij - Hisi) 

where si?; is the square bracket of the action ( 5 ) ,  expressed in terms of the gauge fields, 
but modified at short distances, such as to separate out the core energies in the last 
line. The symbol @phon denotes a gauge fixing functional for the phonon gauge fields. 
The defect partition function (15) is the analogue of the Maxwell-Lorentz theory of 
the electron 

phot 
2 = 9A, 0 [A,] exp I 

xexp(-? [ dt( l - iz)1 '2) .  

In order to turn (15) into the desired quantum field theory of defects and phonons we 
have to remember how the quantum field theory of electrons and photons may be 
obtained from (16). All we have to do is sum in Z over all random orbits of electrons, 
with specific constraints, such as to respect Pauli's exclusion principle. In the present 
case of defects we may simply sum over all non-backtracking world lines of dislocations 
and disclinations in the (2  + 1)-dimensional spacetime. Explicitly, this is most easily 
done by remembering that in a proper crystal, the plastic quantities p:, 4,' are really 
discrete. For example, in a simple cubic lattice with lattice spacing a = 2 n  (say) one 
has pl j  = 2773, where n ,  are all integer numbers [4-71. They present the jumps in the 
position variable uJ across the links i, thus parametrising an ensemble of Volterra 
cutting surfaces S. Similarly, we discretise 4; to parametrise the jumping surfaces of 
the rotation angle w. Taking a similar lattice spacing also for the time variable (which 
is taken to be zero at the end) the surfaces undergo a hopping motion as a function 
of time. 

We are therefore led to describing the ensemble of all fluctuating defects by 
performing, on the second and third exponential in (15), the sum over all these jumping 
numbers, Zin,,no,,m,,m). Since these are integer valued gauge fields, the sum requires a 
gauge fixing functional ader[ r~~ ,n , , ,m~ ,m, l .  

It is now straightforward to transform this sum into a disorder field theory of 
dislocations and disclinations. The technique for doing so has been developed before 
[4a, 7,8] and is explained in detail in reference [7]. 

t For brevity, we have omitted another possible invariant J,,J,,. 
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Four steps are necessary. First we observe that on the lattice, the defect sum 

can be transformed, via a simple manipulation [8,9], into a dual form? 

x e x p ( i  1 d3~[$~,(V,yi-Ai-2~t?0i)2-f~l(Viyj-Aij-2nt?ij)2 
+4E2(V08 - H - 2 T r 6 0 ) * - $ & 2 ( V i 6 + E i j ~ j - H i - 2 7 r 6 i ) ]  (18) 

where V,, V i  are lattice gradients and the integrations over yi, 6 ensure the defect 
conservation laws (12). Second we remove an integer valued field &, fi from yj, 6 
and restrict these angles to the interval ( -T, T )  only. The removed gradients VfiSi, V & f  
can be absorbed into the integer valued gauge fields making the sum over fiijfioiriii6, 
in (18) unrestricted (i.e. we can drop 6). 

C ~ X P ( - ~ ( V , Y  -257fip)2= R V - ~ ( P )  exp(Pv-I(P) cos V,Y) 

Third we use the Villain approximation$ 

;A. 

= & - I @ )  exp(Pv-l(P) Re ~ , (x)G(x+P))  (19) 

to rewrite the exponents in (17) in a two-vector form where 

U,(x) = (cos y(x), sin y(x)). 

Finally, we use the identity 

im dads+ 
f ( u ,  U+) exp[-f(a+(u- u)+cc) ]  

-m 

to rewrite the integral of (19) over y as follows: 

t The numbers CA.,. 6, are integer valued gauge fields which are dual to the defect fields nM, m,. They 
represent the vortex lines in the disorder fields of (24). 

With & I ( @ )  ( I o ( B ) + m ) - ' ,  B = - I /@ log(I,(B)v-t/Io(B)v-l)); I , ,  I, =associated Bessel functions. 
For more details see [ 1 I]. 
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Performing these four steps on (18) leads to the following disorder field theory of the 
two dislocation fields and the disclination field: 

im da,da,'(x) im d l d l + ( x )  
x.1 -m -m -im (27ri)* J -im ( 2 ~ i ) ~  

m 

ZdefKn Im dui du,'(x) 1 du duf(x)  

xexp -i[ (?) Re u:(x)uj(x+O) exp(-iAj(x)) 
V-' x,j 

+(:) Re u'(x)u(x+O) exp(-iH(x)) 
v-' x 

- (:) 1 Re uj"(x)uj(x+ i) exp(-iAu(x)) 
V-' x,j,i 

-(:) Re[u+(x)u(x+ 1) exp(-iHi,(x))u2(x) 
v-' x 

where we have dropped trivial overall constants. It is useful to define combinations like 

D:~JU~(X)= uj(x+i) exp(-iAU(x))-uj(k) 

D?~JU~(X)= uj(x)-uj(k-i)  exp[+iA,(x-i)] 

as covariant lattice derivatives. Then it is easy to perform the following manipulation: 

Re u,'(x)u,(x+ i) exp(-iA,(x)) 
X 

= 4 { u,'(x)[ u,(x + i)  exp( -iAy(x)) - u,(x)] + U:., + cc} 
2 

=$e [ u ~ ( x ) D p ~ J u J ( x ) + ( D p ' J u , ) + u J ( x ) + 2 u : u , ]  

= 4 C [U;( x)( DfIJ - DfIJ) U] (x)  + 2 U; U,] 

= u,+(x)(l+ D;Q;./2)U,(X). 

x 

x 

X 

Similarly we define? 

DiH~*"u(x) = u(x+ i )  exp(-iHi(x))u(x) - u(x) 

Di I' U(X) = u(x) - u ( x  - i) exp[iH,(x- i)]u(x - i). 
(25)  - H  U 

t This satisfies (D  - D)u(x) = DDc + [/up(x - i )  - l]u, in contrast to DA,, of (24) where the second term is 
absent. 
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Then the first two terms in the exponent of ( 2 1 )  become simply 

(:) V-' x,j Re UT(.)( 1 + 2 

( 2 6 )  

For smooth field configurations and small gauge fields, the covariant derivatives 
D ~ J ,  D:u,. . . become simply (d, -iA,). The last covariant derivatives in ( 2 6 )  which 
account for the coupling between dislocations and disclinations via the first defect 
current conservation law (13) always have a non-trivial form. Even if u ( x )  is smooth 
and HI are small it reduces merely to 

DIH~"lu(x)+  [u,(x)(d, -iH,)+u, - l ] u ( x ) + f u , ( x ) [ ( d ,  -iHl)2+id,H,]u(x)+. . . 
~ l H ~ u ~ u ( x ) - ,  [u ,*(k-  i ) ( d ,  -iHl)+ 1 - u,*(x - i ) ] u ( x )  

( 2 7 )  
In the cold phase, in which the expectation of dislocations is zero and (u )=O,  
disclinations have a vanishing next-neighbour coupling in ( 2 6 ) .  In the molten phase, 
however, where U + 1, they move like ordinary particles with the usual gradient term 
(dl - iH,)2. 

If the system has a second-order melting transition, which in two dimensions could 
be possible, due to quantum fluctuations, we can perform, close to T,, a Landau 
expansion and obtain? the following partition function 

-1 2u, * (~-i)[(d,-iH,)~-id,H,]u(x)+. . . . 

with 

+ h (:) [%I( do - iAj) uj l 2  -%[ (a i  - iA,) uj 1'1 
v-1 

- iH)u12-(uz+ uz*)[tl(d, - ~ H , ) u ~ ~ + $ u + u ]  

-(U] + u ~ ) [ ~ ~ ( d 2 - i H 2 ) u ~ 2 + ~ u ' u ]  

t After integrating out 0 ,  and 4' in (22). 
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This partition function governs the quantum phenomena of defect systems in the 
continuum limit. The quantum statistical mechanics can be studied in the usual way 
by considering time to be an imaginary quantity with periodic boundary conditions 
on all fields in the interval T = -i t  E (0,1/  T). 

It must be realised that, except for extreme quantum crystals, the melting transition 
is really of first order and the correlation lengths of the disorder fields never grow to 
infinity. This precludes one from taking a proper continuum limit and the disorder 
field theory must be used in its full lattice formulation (22). The limit (28) is, however, 
structurally interesting since it establishes the close correspondence of QDD with QED 

which for 'scalar electrons' would read 
phot 

9A,  (€J [A,] exp 

The new quantum field theory will hopefully be useful for understanding the dynamic 
plastic properties of crystal as well as the defect mediated melting transition. 
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